Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels.

نویسندگان

  • Stéphane G Lévesque
  • Molly S Shoichet
چکیده

Hydrogels derived from synthetic polymers have been previously engineered to degrade under the activity of matrix metalloproteinases (MMPs). It is believed that these systems can act as extracellular-matrix (ECM) equivalents mimicking the degradation and remodeling of the ECM through the activity of cell-secreted enzymes. In this study, MMP-sensitive hydrogels derived from dextran were developed. In order to avoid the incorporation of hydrolyzable esters often introduced in dextran modification strategies, the polysaccharide was modified with p-maleimidophenyl isocyanate (PMPI) thereby introducing maleimide functionalities in the backbone and resulting in dextran derivatized with p-maleimidophenyl isocyanate (Dex-PMPI). This strategy was favored to separate out the effects of random hydrolysis and enzymatic digestion in the degradation of the dextran hydrogels. A peptide cross-linker, derived from collagen and susceptible to gelatinase A (MMP-2) digestion, was synthesized with bifunctional cysteine termini and used to cross-link the Dex-PMPI. These hydrogels were found to be hydrolytically stable for more than 200 days yet degraded either within 30 h when exposed to bacterial collagenase or within 16 days when exposed to human MMP-2, demonstrating enzymatic-mediated digestion of the peptide cross-links. Further modification of the cross-linked hydrogels with laminin-derived peptides enhanced cell adhesion and survival, demonstrating the potential of these materials for use in tissue engineering applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporally degradable collagen–mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells

Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modifi...

متن کامل

Synthesis and characterization of new injectable and degradable dextran-based hydrogels

Injectable and degradable hydrogels are very interesting networks for drug delivery and cell transplantation applications since they can be administered in the human body in a minimally invasive way. In most cases, the crosslinking reaction occurs by photopolymerisation or free radical polymerisation; however, the use of chemical initiators may promote cell death. In the current work, injectabl...

متن کامل

Gelapin, a degradable genipin cross-linked gelatin hydrogel

The synthesis of genipin cross-linked gelatin (Gelapin) hydrogel materials is presented. Gelapin hydrogels were comprehensively characterised through chemical, mechanical and physical analysis techniques. It was found that the hydrogels could be cross-linked to up to 90% using a genipin concentration of 24.4% (w/ w). The hydrogels reach a stable swollen state and cease leaching of residual star...

متن کامل

Cell migration through defined, synthetic ECM analogs.

We have developed synthetic hydrogel extracellular matrix (ECM) analogues that can be used to study mechanisms involved in cell migration, such as receptor-ligand interactions and proteolysis. The biomimetic hydrogels consist of bioinert polyethylene glycol diacrylate derivatives with proteolytically degradable peptide sequences included in the backbone of the polymer and adhesive peptide seque...

متن کامل

Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds.

Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioconjugate chemistry

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2007